Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System
نویسندگان
چکیده
The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual-inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual-inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual-inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well.
منابع مشابه
Relocalization, Global Optimization and Map Merging for Monocular Visual-Inertial SLAM
The monocular visual-inertial system (VINS), which consists one camera and one low-cost inertial measurement unit (IMU), is a popular approach to achieve accurate 6-DOF state estimation. However, such locally accurate visualinertial odometry is prone to drift and cannot provide absolute pose estimation. Leveraging history information to relocalize and correct drift has become a hot topic. In th...
متن کاملAccurate Monocular Visual-inertial SLAM using a Map-assisted EKF Approach
In this paper, we present a novel tightly-coupled monocular visual-inertial Simultaneous Localization and Mapping algorithm following an inertial assisted Kalman Filter and reusing the estimated 3D map. By leveraging an inertial assisted Kalman Filter, we achieve an efficient motion tracking bearing fast dynamic movement in the front-end. To enable place recognition and reduce the trajectory es...
متن کاملAdaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applic...
متن کاملCamera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملMonocular Visual-Inertial SLAM for Fixed-Wing UAVs Using Sliding Window Based Nonlinear Optimization
Precise real-time information about the position and orientation of robotic platforms as well as locally consistent point-clouds are essential for control, navigation, and obstacle avoidance. For years, GPS has been the central source of navigational information in airborne applications, yet as we aim for robotic operations close to the terrain and urban environments, alternatives to GPS need t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018